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Abstract
Recent investigations of traumatic brain injuries have shown that these injuries can result in conformational changes at the 
level of individual neurons in the cerebral cortex. Focal axonal swelling is one consequence of such injuries and leads to a 
variable width along the cell axon. Simulations of the electrical properties of axons impacted in such a way show that this 
damage may have a nonlinear deleterious effect on spike-encoded signal transmission. The computational cost of these 
simulations complicates the investigation of the effects of such damage at a network level. We have developed an efficient 
algorithm that faithfully reproduces the spike train filtering properties seen in physical simulations. We use this algorithm 
to explore the impact of focal axonal swelling on small networks of integrate and fire neurons. We explore also the effects of 
architecture modifications to networks impacted in this manner. In all tested networks, our results indicate that the addition 
of presynaptic inhibitory neurons either increases or leaves unchanged the fidelity, in terms of bandwidth, of the network’s 
processing properties with respect to this damage.
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1  Introduction

Focal axonal swelling (FAS) is an abnormality that some-
times develops in neurons subjected to physical stress Maia 
and Kutz (2014). In recent years, as medical science has 
taken up the goal of understanding the various mechanisms 
by which concussions affect the brain, progressively more 
accurate microscope imaging technology has shown that 
traumatic brain injury can lead to structural deformations 
in neural axon morphology within regions of affected brain 
tissue (Johnson et al., 2013; Tagge et al., 2018). Specifi-
cally, impact trauma can cause the severance of microtubules 
involved in various cell transport mechanisms (Maxwell 

et al., 1997; Wu et al., 2021), resulting in material pile-
ups at points along the length of the cell axon that cause 
widening of the cell body (Tang-Schomer et al., 2012); 
Wang et al., 2011). As a consequence the electrical impulse 
transmission capabilities of the neuron are affected signifi-
cantly Maia and Kutz (2013).

From a biophysical perspective, the impact of axonal 
swelling on electrical conduction from soma to dendrite is 
likely due to the fact that the compromised cell body acts 
as a variable-(rather than constant-)width cable. Investiga-
tions into the phenomenology arising from such altered 
morphology have been carried out in, e.g., (Debanne 
et al., 2011; Maia et al., 2015; Maia & Kutz, 2013; Manor 
et al., 1991; Ramón et al., 1975). Specifically, Maia and 
Kutz (2013) presents a detailed mathematical study by 
way of numerical solution to variable-width cable PDEs, 
wherein the authors have observed a variety of effects on 
sequences of traveling wave packets traversing this sort of 
non-homogeneity while propagating diffusively. In particu-
lar, this study has indicated that such sequences are subject 
to a trichotomy of consequences including partial packet 
loss, total transmission blockage, and partial reflection; the 
specifics of each case depend on the parameter regime for 
the selected model.
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Of the three categories of effects discussed in Maia and 
Kutz (2013), partial packet loss presents a compelling can-
didate for further study since it indicates that a swollen axon 
may behave as a non-linear frequency filter in the sense of 
signal processing. A systematic (numerical/computational) 
investigation of the nature of the packet loss using the afore-
mentioned PDE model reveals a highly selective deletion 
scheme that is at least somewhat dependent on the time-
sequencing of the packets. For example, there are scenarios 
in which a pair of closely spaced packets will transmit across 
the cable deformation reliably, but a triple with identical 
time spacing will see its third spike deleted Maia and Kutz 
(2017) ; these full-detail studies at the cellular level have 
led to the development of a comprehensive albeit artificial 
computational framework Maia et al. (2019) for mimick-
ing a dilated axon’s signal filtration effects on spiketrain 
sequences. The recorded phenomenology suggests a degree 
of complexity that merits investigation both from the per-
spective of rigorous analysis at the single-axon level and 
from the point of view of impact on network activity and 
information processing.

The present article aims to address how network-level 
properties (both cell and connection type, as well as connec-
tivity and strength of connections) may endow a subpopula-
tion of neurons with greater (resp., lesser) resilience in the 
presence of damage due to focal axonal swelling. Damage of 
the type described is modeled via decreased fidelity of the 
connections, which is exhibited in the form of transmuted 
temporal spiking sequences from presynaptic cells.

Various studies of the consequences of concussive 
damage at the network level have been carried out recently; 
see, e.g., Sharp et al. (2014) for a thorough overview of the 
seminal literature. As it relates to the focus of the present 
discussion, Rudy et al. (2016) used the FORCE algorithm 
of Sussillo and Abbott (2009) to establish a measure 
of tolerance to damage that shows a gradual decline in 
network plasticity-recovery capabilities as the proportion 
of damaged connections is increased. Notably, this analysis 
relied on a firing rate model (based on assumptions 
regarding the effects of axonal swelling damage on the 
spike-emission rates of affected cells) implemented for a 
spiking neuronal network tasked with image processing and 
decision making. Subsequent work in Lusch et al. (2018) 
uses a similar paradigm by leveraging a convolutional 
neural network approach. While illuminating, this line 
of work carries the drawback of potentially overlooking 
the specifics of neurobiology and detailed axon signal-
transduction dynamics at the single-cell level. By 
appealing directly to and artificially imposing a value for 
the firing rate parameter; this en gros approach skips over 
the mechanisms at work within axons that have incurred 
physical defects, in favor of observables that measure a 
neuronal population’s global network activity Ermentrout 

and Terman (2010). These remarks notwithstanding, a 
careful critical examination of the work to date on this topic 
reveals a significant computational challenge: to full detail, 
numerical investigation of this sort of network would involve 
intensive PDE simulations for each damaged axon in tandem 
with a resource-intensive neuronal network implementation. 
The complexity of such a study renders it prohibitive except 
in the case of very small networks over short time periods, a 
severe limitation if one has the objective of scaling to a size 
that would allow for modeling compromised neural tissue 
within, e.g., the mammalian nervous system Herculano-
Houzel (2009).

Instead of working with an a priori firing rate model, 
which averages over the details of dynamics at the cellular/
node level, our study extracts firing rate data as an observ-
able collected from a specific output site within a spiking 
network of integrate-and-fire neurons Gerstner and Kistler 
(2002). The use of a simple one-dimensional integrate-and-
fire model at the cell level allows for an efficient simula-
tion of the spiking network that retains the basic features of 
voltage evolution and depolarization without slowing down 
the numerics Izhikevich (2004). We aim to investigate espe-
cially the manner in which the precise voltage dynamics of 
individual neurons influence the overall impact of traumatic 
stress, on the way to understanding whether specific detailed 
adaptations in network architecture can mitigate this impact. 
Attention has been given recently to network degeneracy and 
its potential to increase the robustness of network processing 
capabilities, with both positive and negative consequences of 
this effect (Stöber et al., 2023; Kamaleddin, 2021). We note 
in particular that brain trauma in the form of Fluid Percus-
sive Injuries (FPI) has been associated with a reduction in 
inhibitory synaptic inputs Neuberger et al. (2017), a finding 
that is consistent with the results that we present in this paper.

To circumvent the simulation of the full axon PDE dif-
fusion model proposed by Maia and Kutz, we implement a 
high-accuracy predictive machine learning algorithm that 
allows the recovery of a post-damage time series of spikes 
given precise knowledge of the input spike train. A statisti-
cal analysis shows that this algorithm is extremely accurate; 
in particular, sufficiently so to warrant its implementation 
entirely instead of the non-linear PDE model. This advance 
speeds up the numerics significantly and presents a data-
driven alternative to the heuristic deletion formula pos-
ited in Maia et al. (2019); our spike deletion rule is trained 
directly from the continuous cable equation due to Hodgkin 
and Huxley; it performs favorably especially in light of its 
direct relation to the biological model -and- its low compu-
tational cost, and so we are able to leverage it in network-
level simulations. While the networks we have investigated 
are only of modest size, the methodology proposed herein 
can be adapted strategically to scale for larger networks, 
more sophisticated connection topology, and features at the 
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cellular level that are ignored in simple integrate-and-fire 
schemes. We have proposed and partially investigated one 
such amenable extension in network size via the layered net-
work formalism (Vogels, 2005; Vogels et al., 2005; Vogels 
& Abbott, 2007).

A fundamental challenge in the present framework 
is the determination of a measure that serves as a reli-
able indicator of a network’s task performance capabili-
ties. For neurons subjected to stochastically generated 
spike trains, the effects of swelling-induced traumatic 
stress on spike-arrival-time based encoding are direct 
but not immediately illuminating. One assumes that a 
time sequence of spikes – modeled by a binary string of 
1’s and 0’s with each bit representing a fixed small time 
interval – is observed after having traversed an axonal 
deformation. It features fewer spikes because of spike 
deletion, and certain select spike arrival times may also 
undergo augmentation (Delahunt et al., 2021; Maia & 
Kutz, 2014).1 This results in a discretized neural code 
exhibiting greater numbers of consecutive 0’s, less fre-
quently interspersed with 1’s; equivalently, a specific 
spike train will see on average an increase in the lengths 
of inter-spike intervals and an effective decrease in spike 
arrival frequency. While these bottom-line effects are 
clear, the stochastic variability typical in biological neu-
rons obscures the interpretation that precise bit-string 
encoding is the most appropriate conduit of information 
on damage within the neural code (Abeles, 1994; Bialek 
et al., 1991; Haslinger et al., 2010; Lestienne, 1996).

We focus instead on stimulus and response firing rate 
measurements averaged over many realizations. A spiking 
network representing a neural tissue with a specific neural 
processing task is bathed in a global stimulus modeled by 
a Poisson spike train with a tunable frequency. In the spirit 
of electrode recordings from a specific location in vivo, a 
target neuron is selected as an output site and its spiking 
statistics are stored and analyzed for various frequencies of 
the global stimulus. This leads to a natural input-output rela-
tion between the frequency of the injected stimulus and the 
mean inter-spike interval at the recording site that typically 
features a specific monotone curve, the details of which are 
dependent on the characteristics of the particular network 
under investigation. In turn, changes to this graph indicate 
the effect that damage has, both at the single-cell level and 
on the network’s at-large signal processing capabilities.

Proceeding in this manner, we are able to analyze 
successively more complex layered feedforward 

networks for input-output frequency response. We 
determine a measurement that assesses the difference 
between response curves of a damaged network and its 
undamaged analog (identical cell type of inhibitory or 
excitatory variety, and network architecture), and this 
allows us a direct view into characteristics that make a 
network more or less susceptible to damage from this type 
of traumatic injury. We show evidence indicating that 
network plasticity - specifically, a strategic addition of 
inhibitory cells or undamaged axonal connections - serves 
to attenuate the effects of damage, altogether pointing to 
mechanisms that may be at play in neural tissues as they 
recover from concussive trauma.

The paper is organized as follows. In Section 2 we pre-
sent the details of the model investigated in the study, spe-
cifically, its properties as a network of interacting dynamical 
systems. We also motivate and define the measure leveraged 
in deducing the effects of focal axonal swelling on this type 
of network model. In Section 3 we provide a summary of 
results for the exhaustive study carried out for basic two-
(modified to three-)element networks, as well as results from 
the exploratory analysis of layered networks by way of the 
principles developed in the small-network study. We also 
provide detailed discussion of the observed phenomenol-
ogy. In Section 4 we summarize the main takeaways from 
the results presented in Section 3 and provide a look ahead 
into possible future work in this setting.

2 � Methods

This investigation focuses on spiking networks of inte-
grate-and-fire neurons employing axonal connections 
that can be either healthy or damaged by swelling result-
ing from traumatic stress. The present setting constitutes 
a specific example of a network of dynamical systems, 
featuring a complex interplay between local intracel-
lular dynamics and interactions between cells Young 
(2022). A mathematical formalism for studying how the 
system changes over time can be achieved via a triple 
consisting of (1) a directed graph (the vertices and edges 
of which indicate the network structure), (2) the local 
dynamical rules governing intracellular processes at 
each vertex, and (3) the precise communication protocol 
in place between vertices adjacent due to the presence 
of an edge, the direction of which serves to distinguish 
between pre- and post-synaptic cells in the sense of neu-
roscience. We proceed to specify here parts (2) and (3) 
in this formalism precisely for our model, thereby draw-
ing attention to the lexicon that we will use to describe 
and interpret the results of the paper. Part (1) will be 
detailed after this, in preparation for presentation and 
discussion of the results.

1  Of note, the computational studies carried out herein are related 
to “Rule (v)” (a.k.a. Increasing refractoriness) in Maia et al. (2019) 
and examine in detail spike deletion in the absence of temporal 
augmentation scenarios; the methodology and algorithm outlined in 
the Appendix can be applied in the more general context as well.
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2.1 � Spiking integrate‑and‑fire neurons

The spiking network simulation method used here is a 
modified version of the synchronous or clock-driven algo-
rithm presented by Brette et al. (2007), to which we have 
introduced a refractory period for each neuron. The latter 
amounts to a dynamical rule ensuring that sufficient time 
has passed since a neuron has last spiked before it is able 
to spike again. This mandatory quiescent phase places a de 
facto bound on individual neural firing rates; its incorpora-
tion into our model is motivated by the behavior of physi-
cal neurons Dayan and Abbott (2001). The communication 
between cells in these networks is achieved via the pro-
cessing of incoming spikes, which serve to affect the local 
dynamics by resulting in contributions to the receiving cell’s 
voltage. An extensive treatise comparing clock-driven algo-
rithms to their event-driven counterparts is given in Rudolph 
and Destexhe (2006); the latter more biologically accurate 
alternative is not feasible in the present context.

Each neuron processes spikes according to an integrate-
and-fire model much like that presented in Gerstner and 
Kistler (2002). A neuron can be excitatory or inhibitory, 
which means either a positive or negative contribution to 
the rate of change of voltage, V, of any neuron that is post-
synaptic to it. Each neuron has three non-negative state 
variables that are updated at each timestep in the simulated 
dynamics – a voltage V, and excitatory/inhibitory potentials 
JE and JI which determine the impact of incoming excita-
tory and inhibitory spikes on the voltage evolution. Assum-
ing there are no spikes at the input of a given cell, its state 
variables evolve as

The time constants �V and �J determine the rate of these 
evolutions. Considering Eq. (1), we can see that in the 
absence of input, the voltage decays exponentially. Equa-
tions (2) and (3) provide that JE and JI also decay expo-
nentially in the absence of spikes. Excitatory and inhibitory 
potentials lead to increases and decreases, respectively, to 
the rate of change of V, allowing the voltage to increase 
when the JE term dominates.

The input of a spike causes an instantaneous jump by w in 
potential JE (resp., JI ) if the spike is produced by a presynap-
tic excitatory (resp., inhibitory) cell. Cells have a threshold 
voltage VT as well as a refractory period TR which determine 

(1)�V
dV

dt
= −V + JE − JI

(2)�J

dJE

dt
= −JE

(3)�J

dJI

dt
= −JI .

when a cell is able to spike. A neuron will spike if V rises 
above threshold voltage once a refractory period has passed.

The routine followed at each time step, separated by Δt , 
of the simulation is presented in Algorithm 1. In particular, 
note that voltage reset and spike emission occur only if volt-
age is above threshold after a refractory period has elapsed, 
a provision that in theory allows the voltage to fluctuate 
above and below threshold on the refractory timescale. The 
numerical values of the parameters in Algorithm 1 used in 
our simulation can be found in Table 1.

2.2 � Axonal transmission and damage

In the case of an undamaged connection, the spikes from 
one neuron are incorporated into the dynamics of connected 
neurons with no intermediate processing. However, if a con-
nection is damaged, the spike train is first subjected to a 
filter that integrates the effects of the damage before the 
processing of the connected neurons. This filter can either 
delete spikes or allow them to be transmitted across the con-
nection faithfully.

A number of detailed models of FAS-related complica-
tions to signal transmission have been developed in recent 
years. The literature surveyed in Wu et al. (2021) presents 

Table 1   Parameters used in simulating networks of neurons, as described 
in Algorithm 1. Values were informed by (Brette et al., 2007; Gerstner & 
Kistler, 2002; Hansel et al., 1998)

Parameter Units Value Significance

Δt ms 0.1 Discrete timestep
�
V

ms 18 Voltage time constant
�
J

ms 5 J
E
 and J

I
 time constant

w mV 0.5 Discrete potential step 
from incoming spike

V
T

mV 0.2 Threshold voltage
T
R

ms 1 Refractory period
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a diverse picture of considerations that are important in the 
study of traumatic brain injuries (TBI). Details of axonal 
geometry and its impact on electrical transmission are rec-
ognized as critical to modeling these phenomena faithfully, 
see, e.g. Ofer and Shefi (2016) for an overview of relevant 
considerations. In particular, an important category of mod-
els for phenomenology specific to spherical axonal swelling 
is supported by physiological data Wu et al. (2020) and pro-
vides a two-dimensional generalization of the model we have 
selected for the present investigation; it should be noted that, 
although we have chosen not to focus on this aspect, such 
further detail in the modeling allows for the incorporation 
of surface area effects around FAS deformations that likely 
play a crucial role in altering the local action-potential firing 
threshhold along the extent of the damaged axon.

The damage filter implemented in this study is inspired 
by the model of axonal swelling presented and analyzed by 
Maia and Kutz (2013). This model was derived by introduc-
ing a continuous deviation of cable radius in the active cable 
equation given by

where V is the voltage, x is distance along the axon, d(x) is 
the radius of the axon at position x, rL(x) is the resistance of 
the axon at position x, R is a gating variable (which models 
the probability of ion channels being open, as in the Hodg-
kin-Huxley model Hodgkin and Huxley (1952)), and a, b, c 
and D are physical constants. The damage is implemented by 
letting d(x) grow from width �B to �A (that is, to swell) over 
a distance �T , according to

where

The resistance rL in the present setting is assumed to be a 
constant 1 Ω . The constants’ physical interpretations, units, 
and values used to calibrate the subsequent studies can be 
seen in Table 2.

A numerical solution of this PDE model can be car-
ried out by an adaptation of the spectral method Thapa and 
Gudejko (2014) to nonlinear equations Fornberg and Sloan 
(1994). The resulting pseudo-spectral method employed by 

(4)
�V

�x
=

D

d(x)

�

�x

(
d2(x)

rL(x)

�V

�x

)
+ V(V − a)(V − 1) − R

(5)
�R

�t
= bV − cR

(6)d(x) =

⎧
⎪⎨⎪⎩

𝛿B, for x ≤ 0

d̃(x), for 0 ≤ x ≤ 𝛿T

𝛿A, for x ≥ 𝛿T

(7)d̃(x) = 𝛿B + (𝛿A − 𝛿B)

(
10

x3

𝛿
3

T

− 15
x4

𝛿
4

T

+ 6
x5

𝛿
5

T

)
.

Maia and Kutz is detailed in the Appendix. These numerical 
solutions are computationally expensive even on the single-
cell scale, and a faster simulation method is required so that 
extensive simulations can be performed at the network level.

This has been previously considered by Maia et al. at the 
single-cell level, in which the authors present formulaic repre-
sentations of “rules" that qualitatively reproduce the character 
of spiketrain transmission along damaged axons Maia et al. 
(2019). Their fifth rule, Increasing refractoriness, is most 
applicable to the present study as it outlines spike deletions 
without temporal shifts. While this method does very well at 
representing certain parameter regimes for damaged axons, it 
cannot reproduce more complex deletion patterns that do not 
simply introduce an effective increase in the refractory period.

Our approach does not assume any behavior a priori, and 
amounts to a statistical algorithm trained from the behavior 
of the damaged active cable model. We note that increased 
refractoriness of spike trains through FAS deformations has 
been observed to be linked to the frequency of incoming 
spikes, with more pronounced effects on higher frequen-
cies Crodelle and Maia (2021). In this regard, the literature 
supports the notion that the selective spike-deletion effect of 
FAS-traversal is a fixed-length time frame effect that can be 
modeled appropriately with a finite-memory kernel recon-
struction such as that proposed herein. The details of this 
damaged axon prediction algorithm (DAPA) are presented 
in the Appendix, with a side-by-side comparison with the 
output of the pseudo-spectral numerical method and the 
increasing refractoriness rule Maia et al. (2019). This com-
parison indicates that the shortcut produces results statisti-
cally equivalent to the pseudo-spectral method. It is more 
general than the increasing refractoriness rule of Maia et al., 
as it can learn more complex deletion patterns.

2.3 � Quantifying the effects of damage

In assessing the effects of damage on a network’s capability 
for rate-encoding, we propose a measure based on the mean 

Table 2   Constants used in our simulations of the active cable 
model, along with their units and biological significance. Values are 
informed by those used by Maia and Kutz (2013)

Constant Units Value Significance

D cm2/�F 0.02 Inverse of specific membrane 
capacitance

a mV 0.1 Fitzhugh-Nagumo offset voltage
b �A⋅Ω∕cm2 0.01 Voltage contribution to R evolution
c Hz 0.05 R contribution to R evolution
d
A

cm 4 Final diameter of axon
d
B

cm 2 Initial diameter of axon
d
T

cm 0.25 Distance across which swelling occurs
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inter-spike interval Iav of a network’s output over an inter-
val of frequencies. The nonlinearity of the network model 
precludes studying the frequency response via tonal analy-
sis (i.e. stimuli with one frequency component). Networks 
are instead stimulated by a Poisson spiketrain Heeger et al. 
(2000) presented as a uniform background excitatory stimu-
lus to all neurons. For each input frequency � (Hz), at each 
time step, we simulate a single sample from the Bernoulli 
distribution with “success" probability p = �Δt . A success 
leads to a spike being processed as an input at every neuron. 
This spike is handled in the same way as a spike from a 
presynaptic (excitatory) neuron.

For each input stimulus frequency � , many realizations 
of the input are simulated to obtain an associated Iav(�) for a 
given network architecture and damage paradigm. Reported 
Iav(�) values are averaged across all realizations; in this 
study, the presented average interspike intervals are aver-
aged over 10,000 realizations.

The prototypical frequency response curve is shown in 
Fig. 1. Such a curve will monotonically decrease towards 
a horizontal asymptote at TR , which is the theoretical lower 
bound of the output spiking period. Thus, the network’s 
capacity to discriminate between different inputs diminishes 
as the input frequency increases.

We define a cutoff frequency above which we say the 
network poorly discriminates between input stimulus 

frequencies. Every network comes with an associated cutoff 
frequency. When a network is damaged, it stands to reason 
that the cutoff frequency will change. This change in cutoff 
frequency depends on both the damage paradigm and the 
original architecture to which damage is applied. We are 
interested in how network architecture itself, as well as mod-
ification to it via addition of connections and cells, result in 
robustness to the effect of damage in this sense.

For an undamaged network of some architecture, we 
define the undamaged network cutoff frequency �u by

Analogously, let the damaged network cutoff frequency 
�d be such a frequency for the associated damaged network 
of the same architecture under a given damage paradigm. 
Figure 1 also shows prototypical Iav(�) curves for associated 
undamaged and damaged networks with �u and �d.

We define a network’s bandwidth as the length of the 
frequency interval over which the network discriminates 
faithfully. We define the bandwidth damage metric, dBW , as

This is the absolute percent deviation of the damaged 
bandwidth from the undamaged bandwidth incurred by 

(8)𝜆u = inf{𝜆 | Iav(f ) ≤ (1.1)TR, ∀ f > 𝜆}.

(9)dBW =
||||
�d − �u

�u

|||| × 100.

Fig. 1   Prototypical curves for 
the average interspike interval 
as a function of frequency for 
associated undamaged and dam-
aged networks. They decrease 
monotonically towards an 
asymptote at T

R
 . We also have 

marked �
u
 and �

d
 , the cutoff 

frequencies for these networks 
where the interspike interval 
reaches 1.1×T

R
 . Note that while 

in this illustration 𝜆
d
< 𝜆

u
 , this 

is not always the case. Our dam-
age metric d

BW
 measures abso-

lute bandwidth difference, so it 
does not discriminate between 
the cases where damage incurs 
a decrease or increase in band-
width
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the specified damage paradigm. That is, it measures how 
much damage impacts the ability of a network to discrimi-
nate between high-frequency stimuli.

It is important to note that there is no inherent value to 
a higher cutoff frequency over a lower one. The cutoff fre-
quency is simply a property of a network which may have 
value associated with its function. As an engineering ana-
logue, the value of the cutoff frequency of a low-pass filter 
is application dependent, and whether raising or lowering it 
would improve performance is entirely application-dependent.

In this light, the absolute value in Eq. (9) is critical. This 
metric encodes how significantly damage alters this fun-
damental network property in either direction, so a more 
robust network in the dBW  sense will better maintain its 
original associated cutoff frequency in the face of damage.

The choice of globally uniform (or coherent) input 
stimulus is made out of convenience. In the Appendix, 
we consider the implications of this assumption by com-
paring the results of small network experiments with 
coherent stimulus to those of networks where each neuron 
receives an independent (incoherent) stimulus. We show 
that with respect to the dBW metric, there is no characteris-
tic difference in our findings for small networks between 
use of coherent and incoherent stimuli.

2.4 � Network architectures of focus

We consider networks of neurons composed of two-cell feed-
forward layers in which the layers are also connected by a 
feedforward structure. This special case of networks is of 
relevance, as feedforward layered integrate-and-fire models 
have been used in the past to approach issues such as logic 
gating and schizophrenia (Vogels, 2005; Vogels et al., 2005; 
Vogels & Abbott, 2007). The spiking properties of such 
networks are observed by measuring the output of the last 
neuron with respect to the order imposed by the feedforward 
structure within and between layers. To begin, we observe 
the undamaged network’s response. We then compare this 
to the response of an associated network featuring damage 
on all axons within layers, but not those between layers. We 
record from the same neuron to obtain the damaged response.

We then consider layer-wise modifications to the net-
work, such as the additions of feedback paths or neurons. 
The undamaged and damaged responses of this modified 
network are determined as well. In each such instance, 
damage is applied only to the axons that were damaged 
in the unmodified network.

2.4.1 � Two‑cell networks

The one-layer case is that of the two-cell network. We con-
sider the dBW incurred by damaging the single axon in this 

network, where the output is observed from the second neu-
ron in the feedforward chain.

We consider two modifications to networks of this 
type: (1) the addition of an axon in feedback from the 
second neuron to the first, and (2) the addition of a neu-
ron at the front of the feedforward chain, connected by 
a new axon to the first cell in the two-cell feedforward 
chain. The additional cells in modification (2) can be 
either inhibitory or excitatory. We also consider the case 
where both modifications (addition of a feedback path 
and addition of an additional neuron) take place. As such 
there are five possible modifications for each two-cell 
feedforward network. Figure 2 provides a graphical rep-
resentation of these modifications made to a given two-
cell network. In determining the dBW  for these modified 
networks, we still consider damage only on the single 
axon which was present in the two-cell network, and we 
continue to measure the output at the final cell in the 
feedforward chain.

2.4.2 � Layered networks

In studying layered networks, we focus on the homoge-
neous case, in which all layers are identical. The inter-
layer connections are realized as an axon connecting the 
second neuron in a feedforward chain to the first neuron 
in the next layer’s feedforward chain. With L layers, this 
network is a 2L-cell feedforward chain, and we read the 
output from the last cell in this chain. We make modifica-
tions of the same 5 types as we did in the two-cell case 
layer-wise. Figure 3 provides a graphical representation 
of these modifications made to a given layered feedfor-
ward network.

Fig. 2   The left-hand side shows an arbitrary feedforward network 
consisting of two cells. X and Y represent the type of cell present at 
that node (inhibitory or excitatory), and X can be the same as Y. The 
right-hand side shows modifications to the network, where Z is the 
type of the potentially added neuron. Arrows with white arrowheads 
represent connections which can be made so as to modify the network 
– a feedback path can be added, a third neuron can be added at the 
front of the chain, or both can be added at once
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3 � Results and discussion

We present an analysis of the studies described in Section 2. 
We summarize the results briefly below, and then provide 
discussion for each network case in detail.

All investigated networks either benefit from or are 
unaffected by the addition of inhibitory neurons at the front 
of each layer with respect to dBW-robustness in the face 
of imposed damage. Due to the exhaustive nature of this 
study, this provides a plausible, consistent mechanism for 
the improved robustness of small layered networks, by way 
of plasticity via the addition of inhibition.

For single-layer feedforward networks, there always exist 
modifications which lower the dBW . In particular, the addi-
tion of an inhibitory cell to the front of a feedforward chain 
will always result in a smaller dBW than in the base case. 
Thus, for networks of this type, there is a single mechanism 
by which neuroplasticity can consistently promote recovery.

For larger layered networks of the homogeneous type, 
the addition of an inhibitory cell to the front of each layer 
will never increase dBW from its base case value. However, 
it does not necessarily decrease this dBW , meaning that this 
modification will at worst have no effect on the bandwidth 
of the network.

It may be noted that the modifications alone also change 
the undamaged network’s bandwidth, in a manner that is 
often more significant than the effect of damage. As such, 

Fig. 3   The left-hand side shows an arbitrary feedforward network 
consisting of two-cell layers. The right-hand side shows modifications 
to the network, which are applied uniformly across layers

Fig. 4   Damaged and undamaged frequency responses of all tested 
modifications for a single-layer network consisting of two inhibitory 
neurons. Dotted lines indicates the cutoff frequencies, �

u
 and �

d
 . A 

– The frequency responses for the base case: a two-cell feedforward 
network. B, C – The frequency responses for modified networks in 
which a single neuron is added to the front of the feedforward chain 
of the base network from that in panel A. It can be seen that addi-
tion of an inhibitory cell lowers the d

BW
 value from the base case 

value, while adding an excitatory cell raises the d
BW

 value. D – The 
frequency response of the modified network in which a feedback path 
is added from the output neuron to the first neuron in the feedforward 
chain, resulting in a lower d

BW
 . E, F – Frequency responses for modi-

fied networks in which both a feedback path and a neuron is added. 
Addition of feedback and an inhibitory neuron results in a higher d

BW
 , 

whereas addition of feedback and an excitatory neuron incurs no sig-
nificant change in d

BW
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the modifications themselves should not be thought of as 
mechanisms to recover the original network bandwidth 
but instead to boost the network bandwidth’s reliability or 
robustness in the face of damage.

3.1 � Single‑layer feedforward networks

In this section we present the exhaustive numerical study of the 
effects of damage on single-layer feedforward networks. We 
compare the dBW values for feedforward networks of two cells 
with corresponding modified networks of two to three cells.

For example, Fig. 4 shows the � vs. IAV curves from which dBW 
is computed for a feedforward network of two inhibitory cells, 
as well as the effects of the 5 modifications to such a network.

Table 3 contains all such dBW comparisons for the single-
layer case. Note that the addition of an inhibitory cell always 
has a restorative effect on the network’s dBW – that is, dBW is 
always decreased by addition of an inhibitory cell. From an 
intuitive perspective, the addition of an inhibitory cell at the 
front of a network decreases the firing rate of the cell to which 
it is connected. We expect the damage to act as a non-linear 
low-pass filter, so a decrease in firing rate would make spikes 
more likely to be faithfully transmitted through a damaged 
axon. Thus, the restorative nature of the addition of an inhibi-
tory cell in feedforward is consistent with intuition.

In certain networks, other modifications outperform the 
addition of an inhibitory cell. For example, in the case of 
EI feedforward networks, the addition of both a feedback 

connection and an excitatory neuron entirely eliminates 
changes in the bandwidth relative to the precision of our 
simulations. The restorative mechanism of such a modifica-
tion is not particularly intuitive as a result of the competing 
effects that are present. That is, excitation at the front of a 
feedforward network should increase the firing rate of the 
first neuron and make damage more impactful, but the feed-
back acts so as to lower the firing rate in a manner propor-
tional to the firing rate itself. In this case, these competing 
effects play out in the favor of the network’s recovery. It is 
clear from this example that for networks with any devia-
tion from the two-cell feedforward structure, it is difficult 
to intuit which modifications may result in a lowering of 
dBW . This modification in particular does not have restora-
tive effects for any other two-cell network architecture. No 
modification other than the addition of a single inhibitory 
cell is seen to have a consistent restorative effect on net-
works of this type.

3.2 � Homogeneous layered feedforward networks

3.2.1 � Two‑layer networks

In this section we present the effects of damage on layered 
networks of the homogeneous type. To begin, we consider 
two-layered networks, for which Table 4 shows the results 
of all possible modifications.

Table 3   d
BW

 values for one-layer networks presented in % of �
u
 . 

Highlighted cells show d
BW

 values for modified networks which are 
lower than the d

BW
 for the respective base case. The addition of an 

inhibitory cell invariably lowers the d
BW

 from the base case. Simi-
larly, the addition of an excitatory cell in feedforward always raises 
the d

BW
 from the base case. For an “EI” network, the addition of a 

feedback path as well as an excitatory neuron in feedforward yields a 
d
BW

 of 0, meaning that for such a modified network, the damaged and 
undamaged frequency responses are indistinguishable. Addition of a 
feedback path alone is restorative only for a network consisting of two 
inhibitory neurons

Network Base Case Add I Cell Add E Cell Add FB Add FB and I Add FB and E

EE 10 8 24 50 29 67
EI 10 8 24 11 10 0
IE 16 11 18 18 16 18
II 16 11 18 13 22 16

Table 4   d
BW

 values for 2-layer networks presented in % of �
u
 . High-

lighted cells show d
BW

 values for modified networks which are lower 
than the d

BW
 for the respective base case. The addition of an inhibitory 

cell at the front of each layer can be seen to provide a restorative effect 
in three of four networks. In the “EI” network, we see that the base 
d
BW

 is 0. In this case, the addition of an inhibitory cell does not raise 

the d
BW

 . Thus, the layer-wise addition of an inhibitory cell in feedfor-
ward has, at worst, a neutral effect on two-layer feedforward networks. 
Unlike in the single layer case, we see here that there is never a better 
modification than the addition of inhibitory cells. We also see that the 
addition of both feedback paths and inhibitory neurons in each layer 
provides a restorative or neutral effect in all four networks

Network Base Case Add I Cell Add E Cell Add FB Add FB and I Add FB and E

EE 33 5 62 82 24 67
EI 0 0 0 0 0 5
IE 18 16 18 18 16 18
II 15 0 16 0 0 16
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Note that there are networks which show an increase in 
dBW in response to modifications that have restorative effects 
in their respective two-cell analogues. For example, we saw 
that the addition of a feedback path and an excitatory cell 
had restorative effects on the EI feedforward network of the 
two-cell type, yet the analogous modification to the two-layer 
network creates the largest observed increase to dBW across 
all modifications. This indicates that layered networks do not 
inherit the characteristics of their single-layer analogues.

The addition of an inhibitory cell to each layer of a 
two-layered homogeneous network never increases dBW  , 
but it also does not always decrease it. This is weaker 
than the result seen for two-cell feedforward networks, 
but still allows for a mechanism by which neuroplasticity 
can attempt to restore a network of this type without risk 
of detrimental effects. This provides an instance in which 
two-layer networks inherit characteristics from their one-
layer analogues, despite this not being the case in general.

We note also that there are two-layer networks which are 
very robust to damage with respect to this metric. For exam-
ple, the network which is composed of EI layers experiences 
no change in bandwidth due to the addition of damage.

3.2.2 � Networks containing more layers

We have recognized a pattern in which the layer-wise addi-
tion of inhibitory drive enhances a network’s robustness 

to damage in the one- and two-layer cases. It is natural 
to ask whether this pattern will continue as the number 
of layers is increased. Since the complexity of networks 
increases with the number of layers, we illustrate the 
potential effects of modification for larger layered net-
works by focusing on case studies of ten and fifty layers.

Table 5 shows the dBW  for ten-layer networks. At this 
size, it is still the case that layer-wise addition of inhibi-
tory drive never increases a network’s dBW  . Fifty-layer 
networks exhibit this property as well, as seen in Table 6. 
That is, for all tested sizes of homogeneous feedforward 
networks, we observe a consistent restorative effect of 
additional layer-wise inhibitory drive.

4 � Conclusions

For homogeneous layered networks of varying sizes, we 
find that there is always a modification that can diminish 
the effect of damage as captured by the dBW metric. Bio-
physically, these modifications can be interpreted as the 
rerouting of both extra- and intra-network connections via 
neuroplasticity. Thus, neuroplasticity may always provide 
a mechanism for the mitigation of the effects of damage 
incurred by focal axonal swelling.

In particular, we see that there exists a single modification 
– the layer-wise addition of inhibition – that always increases 
the robustness of networks of this type. As this modifica-
tion’s effect is present across networks of all tested sizes, it 
provides a simple mechanism through which neuroplasti-
city may aid any homogeneous feedforward network. Other 
restorative modifications are present in specific network 
architectures and at specific network sizes. For example, in 
the single-layer “EI” case, the addition of a feedback connec-
tion and an excitatory drive can reduce dBW to 0. Meanwhile, 
this modification exacerbates damage in all other networks 
of this size, and in all tested larger networks. Similarly, while 
the addition of feedback and inhibition has at worst neutral 
effects on two-layer networks, it can exacerbate damage in 
networks of other sizes. Thus, the dBW metric is sensitive to 
perturbations of both network size and network architecture. 
Besides layer-wise addition of inhibition, there is no tested 

Table 5   d
BW

 values for 10-layer networks presented in % of �
u
 . High-

lighted cells show d
BW

 values for modified networks which are lower 
than the d

BW
 for the respective base case. Layer-wise addition of 

inhibitory neurons has a restorative effect in three of four networks, 

only having a neutral effect on a network with a base d
BW

 of 0. Fur-
thermore, in all cases there are no modifications which provide a 
more restorative effect than the addition of inhibitory cells layer-wise

Network Base Case Add I Cell Add E Cell Add FB Add FB and I Add FB and E

EE 43 24 67 82 67 82
EI 0 0 5 0 0 0
IE 18 16 18 18 18 18
II 15 0 18 0 0 18

Table 6   d
BW

 Values for 50-layer networks in which only the addition 
of an inhibitory cell modification is made, presented in % of �

u
 . These 

networks see at worst neutral effects from the addition of inhibitory 
neurons layer-wise, where this modification is only neutral when the 
base network has a d

BW
 of 0. Two of four base networks show d

BW
 

values of 0, while in the two networks which present non-zero d
BW

 , 
we observe d

BW
 values of a similar magnitude to those observed in 

smaller networks

Network Base Case Add I Cell

EE 43 24
EI 0 0
IE 18 16
II 0 0
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modification that acts in a restorative fashion on networks 
of all architectures and sizes.

Network size, in the sense of number of layers, also plays 
a restorative role for certain architectures. For example, the 
“EI” network presents a base dBW of 0 at two layers, ten lay-
ers and fifty layers. However, network size does not have 
a restorative effect in general, as “EE” and “IE” networks 
present base dBW values that never decrease as network size 
is increased.

Our results show mechanisms by which networks of 
a specific architecture can be made more robust to focal 
axonal swelling. It is natural to consider similar modifica-
tions made to networks of similar architectures. For exam-
ple, one could consider layered networks that do not have a 
feedforward structure, or heterogeneous layered networks. 
With regards to possible future work in this area, it would 
be appropriate to review the recent attention given to recur-
rent network structure and its likely central role in training 
/ machine learning, especially in the context of neuronal 
networks capable of spiketrain signal encoding as relevant 
for the mamalian nervous system Bellec et al. (2020). We 
see the application of our signal filtering scheme as well as 
the network bandwidth analysis as promising tools for lend-
ing insight into the interplay of this area of research with 
the effects of traumatic brain injuries and possibilities for 
recovery and robustness.

Our results on homogeneous networks imply that archi-
tecture plays a critical role in the base resilience of a network 
to damage. Naturally, one could consider the set of all small 
perturbations to a given network and study their effects sys-
tematically and exhaustively. Such a study could potentially 
isolate aspects of architectures which make networks more 
or less susceptible to damage. With the use of DAPA, such 
a study is computationally tractable even for large networks 
– even ones that feature more complicated neuron dynam-
ics models at the cell level. This line of work can also be 
interpreted in the context of network degeneracy (Neuberger 
et al., 2017; Kamaleddin, 2021; Stöber et al., 2023), thus 
drawing connections with a large body of current research 
in neuroscience.
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